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The propagation of water surface waves over one-dimensional periodic and random bottoms is investigated
by the transfer matrix method. For the periodic bottoms, the band structure is calculated, and the results are
compared to the transmission results. When the bottoms are randomized, the Anderson localization phenom-
enon is observed. The theory has been applied to an existing experimentfM. Belzonset al., J. Fluid Mech.
186, 539 s1988dg. In general, the results are compared favorably with the experimental observation.
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I. INTRODUCTION

Propagation and scattering of gravity waves over topo-
graphical bottoms has also been and continues to be a subject
of much research. A great amount of papers and monographs
have been published on water waves over various topo-
graphical bottomsf1–12g. A comprehensive reference on the
topic can be found in three excellent textbooksf13–15g.

When multiply scattered by periodic or random topo-
graphical bottoms, the so-called band gaps and Anderson lo-
calization phenomena prevailf16,17g and have been investi-
gated in the context of water surface waves over
topographical bottoms. In 1983, Guazzelliet al. f18g sug-
gested that the phenomenon of Anderson localization could
be observed on shallow water waves, when the bottom has
random structures. Later, Devillardet al. reconsidered water-
wave localization inside a channel with a random bottom in
a framework of the potential theoryf19g. They computed the
localization length for various cases. The experimental ob-
servation of water-wave localization has been subsequently
suggested by Belzoneet al. f7g.

When the topographical bottoms are periodically struc-
tured, the propagation of water surface waves will be modu-
lated accordingly. According to the Bloch theorem, waves in
a periodic medium, termed Bloch waves, can be expressed in
terms of the product of a plane wave and a periodic function
which has the periodicity of the medium. Therefore, the
waves will exhibit the properties of both plane-wave propa-
gation and periodic modulation. Indeed, a recent experiment
f20g has used gravity waves to illustrate the phenomenon of
Bloch waves over a two-dimensional periodic bottom. This
pioneering experiment has made it possible that the abstract
concept be presented in an unprecedentedly clear manner.
The experimental results have also been matched by a theo-
retical analysis in Ref.f21g.

Motivated by these developments, we wish to further con-
sider the propagation and localization properties of water
surface waves. Two-dimensional situations have been con-
sidered elsewheref22g. There the propagation of water
waves over cylindrical steps has been considered. It is shown
that the waves can be localized spatially through the process
of multiple scattering and wave interference. When local-

ized, the transmission of the waves falls off exponentially in
all directions, and a cooperative behavior appears.

In this paper, we will consider water waves over one-
dimensional uneven bottoms. The systems adopted here are
from the experiment of Belzoneet al. f7g. We present a the-
oretical analysis of the previous experimental resultsf7g. The
formulation in Ref.f23g will be used for this purpose. Com-
parison between the experimental and theoretical results, in
return, provides a verification of the theory. We will study
the band structure of periodic cases, the effect of randomness
on wave propagation, the relation between the band gaps and
localization, and the amplitude or energy distribution over
the structured bottoms. The dependence on parameters, such
as the frequency, water depth, and variations of the height
and width of the obstacle steps, will be examined in detail.
Although the experiment to be analyzed here was done
nearly 20 years ago, to the best of our knowledge, however,
there have been no further experiments which have been
done on water waves in the context of localization effects.
Even existing limited experimental results have not been
thoroughly analyzed. The present paper bridges the gaps
with the hope that further experimental investigations may
be arranged. From the results, we can see a few differences
between two-dimensionals2Dd and one-dimensionals1Dd
cases. For example, in 2D, localized waves start the expo-
nential decay right from the transmission site, while in 1D,
the exponential decay starts when waves have traveled a rea-
sonably long distance. We also emphasize that the present
paper has been limited to consider linear water waves. For
nonlinear wave situations, readers may refer to Ref.f12g.

The paper will be constructed as follows. In the next sec-
tion, we will present the formulation and parametrization of
the problem. The results and discussion will be presented in
Sec. III, followed by a summary in Sec. IV.

II. GENERAL FORMULATION

A theory of water-wave propagation over step-mounted
bottoms has been recently proposed and developed in Refs.
f21,23g. This formulation has been used earlier in interpret-
ing some experimental dataf21g. While the details can be
referred to in Ref.f23g, here we only present the final equa-
tion. After the Fourier transformation, the equation describ-
ing the wave of frequencyv over topographical bottoms is*Electronic address: chkuo@phy.ncu.edu.tw
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¹S 1

k2 ¹ hD + h = 0, s1d

wherek satisfies

v2 = gksrWdtanhfksrWdhsrWdg, s2d

whereh is the surface displacement,g is the gravity accel-
eration constant, andh is the depth from the surface. For a
fixed frequency, the variation of the wave numberk with the
topographical bottom is determined by the depth functionh.

From Eq. s1d, we have the conditions linking domains
with different depths as follows: bothh and

tanhskhd
k

h =
v2

gk2h

are continuous across the boundary.

A. Application to one-dimensional situations

1. Single step

First, consider a step with widthd and a wave propagating
along thex direction. The conceptual layout is as in Fig. 1sad.
We use the standard transfer matrix method to solve for the
wave transmission across the step.

The waves on the left, within, and on the right side of the
step can be generally rewritten as

hL = ALeikLx + BLe−ikLx,

hM = AMeikMx + BMe−ikMx,

hR = AReikRx + BRe−ikRx. s3d

The subscriptsL, M, and R represent the quantities on the
left side, in the middle, and on the right side of the step,
respectively.

The boundary conditions lead to the following equations:

ALeikLxL + BLe−ikLxL = AMeikMxL + BMe−ikMxL, s4d

1

kL
sALeikLxL − BMe−ikLxLd =

1

kM
sAMeikMxL − BMe−ikMxLd s5d

and

AMeikMxR + BMe−ikMxR = AReikRxR + BRe−ikRxR, s6d

1

kM
sAMeikMxR − BMe−ikMxRd =

1

kR
sAReikRxR − BRe−ikRxRd.

s7d

In these equations,xL,R stands for locations of the left and
right sides of the step, respectively, andxR−xL=d.

The first set of boundary equations gives the matrix rela-
tion

SAL

BL
D = TLMSAM

BM
D , s8d

with

TLM =
1

2
Ss1 + gLMdeiskM−kLdxL s1 − gLMde−iskM+kLdxL

s1 − gLMdeiskM+kLdxL s1 + gLMde−iskM−kLdxL
D s9d

and

gLM =
kL

kM
.

Similarly, we can derive

SAM

BM
D = TMRSAR

BR
D , s10d

with

TMR =
1

2
Ss1 + gMRdeiskR−kMdxR s1 − gMRde−iskR+kMdxR

s1 − gMRdeiskR+kMdxR s1 + gMRde−iskR−kMdxR
D

s11d

and

gMR =
kM

kR
.

From Eqs.s9d and s11d, we obtain the following solution
in the transfer matrix form:

SAL

BL
D = TLRSAR

BR
D , s12d

with

TLR = TLMTMR. s13d

Equations12d relates the waves on the left to the right side of
the step.

2. Case of N steps

Now we considerN steps in a unform medium of wave
numberk. The illustration is in Fig. 1sbd. The step widths are
di and the water depths over the steps arehi. The wave num-
ber over the step is denoted bykisi =1, . . . ,Nd. They satisfy
the following relations, respectively:

FIG. 1. Conceptual layouts.
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v2 = gh tanhskhd, v2 = ghi tanhskihid. s14d

Clearly, the coefficients on the leftmost region is related
to the most-right-hand region by

SAL

BL
D = TsNdSAR

BR
D , s15d

with

TsNd = p
i=1

N

Ti . s16d

The matrixTi is the transfer matrix for theith step and will
be given below.

Let us consider a unit plane-wave propagation along thex
direction, and explore the reflection and transmission prop-
erties. In this case, clearly we have

AL = 1, BR = 0. s17d

BR=0 is the common radiation condition. Thus from Eq.s15d
we arrive at the solutions

ARsNd =
1

T11sNd
, BLsNd =

T21sNd
T11sNd

. s18d

The subscripts denote the corresponding matrix elements.
The transmission and reflection coefficients are defined as

T = uARsNdu2, R= 1 −T. s19d

Now we construct theT matrix for each step. In the cur-
rent case, we have

gLMsid =
k

ki
, gMRsid =

ki

k
s20d

and

kL = k, kM = ki, kR = k. s21d

We denotegs,i =k/ki. Therefore,

Ti =
1

4
Ss1 + gs,ideiski−kdxi,L s1 − gs,ide−iski+kdxi,L

s1 − gs,ideisk+kidxi,L s1 + gs,ide−iski−kdxi,L
D

3 Ss1 + 1/gs,ideisk−kidxi,R s1 − 1/gs,ide−isk+kidxi,R

s1 − 1/gs,ideisk+kidxi,R s1 + 1/gs,ide−isk−kidxi,R
D .

s22d

B. Simulation setup

1. Nondimensional parametrization

Consider an infinite periodic array of the steps, as shown
in Fig. 1. The lattice constant isL. For random arrays,L
refers to the average distance between two adjacent steps.

The dispersion relation is

v2 = gk tanhskhd.

This can be rewritten as

v2

v0
2 = skLdtanhSskLd

h

L
D ,

with

v0
2 =

g

L
.

Therefore, in all later computations, the length can be scaled
by L, the frequency byv0, and the wave number bykL.

The wave numbers in the medium and within the steps are
given by sat the same frequencyd

v2

v0
2 = skLdtanhSskLd

h

L
D , s23d

v2

v0
2 = skiLdtanhSskiLd

hi

L
D . s24d

This leads to

gs,i =
kL

kiL
,

and the transfer matrix of theith step is

Tsid =
1

4
Ss1 + gs,ideiskiL−kLdxi,L/L s1 − gs,ide−iskiL+kLdxi,L/L

s1 − gs,ideiskL+kiLdxi,L/L s1 + gs,ide−iskiL−kLdxi,L/L D 31S1 +
1

gs,i
DeiskL−kiLdsxi,L+did/L S1 −

1

gs,i
De−iskL+kiLdsxi,L+did/L

S1 −
1

gs,i
DeiskL+kiLdsx1,L+did/L S1 +

1

gs,i
De−iskL−kiLdsxi,L+did/L2 ,

s25d

wherexi,L is the coordinate of the left side of theith step.

2. Band structure for periodic cases

For the periodically arranged steps withdi =d andhi =h1,
the band structure can be solved. According to Bloch theo-

rem, the water surface displacementh can be expressed as

hsxd = jsxdeiKx, s26d

whereK is the Bloch wave number andjsxd is a periodic
function modulated by the periodicity of the structure—i.e.,
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jsx+Ld=jsxd. The relation betweenK and the frequencyv
can be obtained by taking Eq.s26d into Eq. s15d.

We can derive an equation determining the band structure
in the periodic case,

cossKLd = cosfk1Lsd/LdgcosfkLsL − dd/Lg

− coshs2jdsinfk1Lsd/LdgsinfkLsL − dd/Lg, s27d

where

j = lnsqd, with v2 = gk1 tanhskh1d, q2 =
k1

k
.

3. Random situations

There are a number of ways to introduce the randomness.
s1d Variation in the height of the steps: with the fixed widths
and positions of the steps, the height of the steps can be
varied in a controlled way. For example, the height of the
steps can be varied randomly betweenfH0−DH ,H0+DHg.
s2d Positional disorders: initially, the steps can be arranged in
a lattice form. Then allow each step to move randomly
around its initial position. The allowing range for movement
can be controlled and denotes the level of randomness. The
extreme case is completely randomness.s3d Width random-
ness: we can also introduce the randomness for the widths of
the steps. In the simulation, we will consider the randomness
introduced in the experimentf7g.

When randomness is introduced, a few definitions are in
order. The most important quantity is the Lyapounov expo-
nentg. Its definition is

g = lim
N→`

kgNl, s28d

where

gN ; −
1

N
lnfuARsNdug.

Here uARsNdu2 is the transmission coefficient for a system
with N random steps, referring to Eq.s18d,

uARsNdu2 =
1

uT11sNdu2
.

The symbolk·l denotes the average over the random configu-
ration. The inverse of the Lyapounov exponent characterizes
the localization length—i.e.,j=gN

−1.

III. RESULTS AND DISCUSSION

The systems are from the previous experimentf7g. That
is, the bottoms are mounted with a series of steps and these
steps are either regularly or randomly but on average regu-
larly placed on the bottoms. Three cases are considered and
are illustrated by Fig. 2. In the bed P case, the averaged water
depth isH0, the periodicity is 2L0, and the step variation is
fixed atsH. In the bed RS case, the averaged water depth is
H0, the step variation is fixed atsH, and the separation be-
tween steps is uniformly distributed withfd0−Dd,d0+Ddg.
In the bed R case, both the height and separation between the

steps are allowed to vary randomly, but within the ranges
fH0−DH ,H0+DHg and fL0−DL ,L0+DLg, respectively.

The experimental setups have been described in Sec. II of
Ref. f7g. We briefly repeat here. The experiments were car-
ried out in a glass-walled wave tank with length 4 m and
width 0.39 m. A bottom composed of periodic or random
steps was built into a flat bottom with mean water depthH0.
The different bottoms varied only along the tank so that,
apart from weak edge effects, the propagation of waves is
considered to be one dimensional. The resolution of the wa-
ter depth is estimated at about 0.2 mm.

A. Band structure and transmission

First, we consider the first case in the experiment: the
periodic case—i.e., the bed P case. For this case, the band
structure and the transmission are computed for two water
depths. In both cases, the width of the steps isL0=4.1 cm;
therefore, the periodicity is 8.2 cm. The results are shown in
Fig. 3. From the band structure results insa1d and sb1d, we
observe that for the small water depthsH0=1.75 cmd, there

FIG. 2. Situations considered in this paper, adopted from Fig. 2
of Ref. f7g. sad Bed P case: in this case, the steps are mounted
periodically with lattice constant 2L0; the variation of the stepssH
is fixed.sbd Bed RS case: in the case, the steps are allowed to move
randomly from their initial periodic positions, as set in the bed P
case—the allowed range is denoted as ±DL and the variation of the
stepssH is fixed. scd Bed R: in this case, both the heights and the
widths are allowed to vary randomly from their initial values in the
bed P case within the rangesfH0−DH ,H0+DHg and fL0−DL0,L0

+DL0g.
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are two band gaps in the frequency range measured in the
experiment, while in the deeper casesH0=3 cmd there is one
band gap. The locations of the band gaps match the inhibited
transmission regimes. The width of the gap and the inhibition
effect tend to decrease with frequency as shown bysa1d and
sa2d. This is understandable. In the high-frequency limit—
i.e., when kh@1—the dispersion relation in Eq.s2d ap-
proachesv2=gk. Therefore the importance of the bottom
structure will decrease with increasing frequency. The results
in Fig. 3 will help us comprehend the later results.

B. Reflection coefficient

In the experimentf7g, the reflection coefficients are mea-
sured for the three cases: bed P, bed R, and bed RS cases.
Two average water depths are considered:H0=1.75 and
3 cm. We have considered all the cases and applied the for-
mulation in Sec. II to obtain corresponding results. In Fig. 4,
we present our theoretical results. For the convenience of the
reader and as a comparison, we also replot the experimental
results in the same figuresleft paneld. We have taken into
account two random configuration numbers in the simula-
tion: one is 5 random configurations—i.e., the middle
panel—which is taken as the same as in the experiment; the
other in the right panel is more than 10 000 random configu-
rations to ensure the stability of the averaging results. All the
parameters are repeated from Ref.f7g.

Figures 4sa1d, 4sa2d, and 4sa3d compare the results for the
bed RS and bed P cases with averaged water depthH0
=1.75 cm and step widthL0=4.1 cm. For both cases, the
ratio sH /H0 is fixed at 0.43; i.e., there is no variation in the
step heights. In the bed RS case, the disorder is introduced to
the separation between steps; that is, the separation is ran-

domly chosen with uniform distribution withinf2 cm,8 cmg
or fd0−3,d0+3g with d0=5 cm. In the simulation, the total
number of steps is 58. We have taken two numbers of ran-
dom configuration in the simulation. One is 5sa2d, which
complies with the experiment, and the othersa3d is 10 000
times, so to ensure the stability of the averaging. The experi-
mental data are shown insa1d. The comparison ofsa1d, sa2d,
andsa3d indicates the following. Overall speaking, the theo-
retical results capture well the qualitative features observed
experimentally and agree to a certain extent with the experi-
mental results.

First we consider the bed P case.s1d The theoretically
predicted positions of the reflection peaks agree well with the
experimental observation in the bed P case. These positions
also coincide with the band gaps from the band structure
computation in Fig. 1.s2d In the bed P case, the reflection
coefficient reaches its maximum value of 1 within the band
gaps as expected, while the experimental values are always
smaller than 1 for the frequency range considered. A possible
reason for this discrepancy may be that in the theoretical
simulation, we did not take into account possible dissipation
effects caused by such as viscosity and thermal exchange;
some of these effects have been discussed in Ref.f7g. These
effects tend to prevent waves from propagation.s3d The the-
oretical width of the first reflection peak in the bed P case
matches well that observed, but the theoretical width of the
second reflection peak at about 4 Hz is narrower than that
from the experiment. In fact, the experimentally measured
widths of the two reflection peaks are more or less the same.
Since the effects of the periodic bottom diminish with in-
creasing frequency as discussed above, we may conclude
that there are other effects which could broaden the reflection
peak at 4 Hz, and these effects may include those from the
dissipation, nonlinearity, and evanescent mode leakage.
These effects have not been considered in the current theory
f23g.

Now we consider the bed RS case.s1d Again, except for
the peak values in the reflection, the theoretical results repro-
duce the experimental observation reasonably well in gen-
eral, particularly at the strong reflection located at about
2 Hz. s2d Different from the bed P case, the width of the first
reflection peak at 2 Hz is wider in theory than in the experi-
ment.s3d In both theory and experiment, a second reflection
peak is noticed within 4 and 5 Hz.s4d An obvious difference
between the theory and experiment is at low frequency
around 1.2 Hz, a strong sharp reflection peak appears at
1.2 Hz in the experiment, but is absent in the theory. This
experimental observation differs from previous observations
in acoustic or optical systemsf17g. In acoustic or optical
systems, the disorder effect decreases as the frequency de-
creases. Therefore, waves tend to diffuse away, leading to
weaker reflections at low frequencies. In fact, the result of
the reflection measurement is also in disagreement with the
localization measurement shown in Fig. 15 of Ref.f7g where
it is shown that the localization length at 1.2 Hz is even
longer than at 1.5 Hz at which the reflection is small; the
longer the localization length, the weaker the reflection.s5d
Increasing the number of random configuration tends to
smooth the curves.

The comparison between the theoretical and experimental
reflection results for the bed P and bed R cases withH0

FIG. 3. Band structure and transmission for the bed P case in
two situations, referring to Fig. 2sad: sa1d and sa2d The average
water depth isH0=1.75 cm, and the height variation issH /H0

=0.43.sb1d andsb2d The average water depth isH0=3 cm, and the
height variation issH /H0=0.25. The left and right panes show the
band structure and transmission results, respectively. The transmis-
sion is presented in the logarithmic scale for 100 steps.
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=3 cm is shown by Figs. 4sb1d, 4sb2d, and 4sb3d. The pa-
rameters are as follows.s1d Bed P: sH /H0=0.25, L0
=4.1 cm; s2d Bed R: the separation between steps varies
completely randomly withinL0±DL with DL=2 cm, and the
height of the steps varies uniformly withinH0±DH with
DH=1.26 cm. The number of steps is 58. Insb2d, five ran-
dom configurations are used for averaging, and insb3d
10 000 random configurations are used to ensure the stability
of the averaging. In the bed P case, except at the reflection
peak, the theoretical results reproduce very well the experi-
mental observation. In the bed R case, the theoretical results

also match that from the experiment in both the qualitative
structure and the magnitude, referring tosb1d and sb2d. The
existing deviation may result from an insufficient random
average.

The comparison between the theoretical and experimental
reflection results for the bed P and bed R cases withH0
=1.75 cm is shown by Figs. 4sc1d, 4sc2d, and 4sc3d. The
parameters are as follows.s1d Bed P: sH /H0=0.43, L0
=4.1 cm. s2d Bed R: the separation between steps varies
completely randomly withinL0±DL with DL=2 cm, and the
height of the steps varies uniformly withinH0±DH with

FIG. 4. Reflection versus frequency for the bed RS and P cases with three average water depths. Left panel: the results from the
experimentf7g. Middle panel: the theoretical results with the average over five random configurations. Right panel: the theoretical results
with the average over 10 000 random configurations, so to make sure the stability of the average.
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DH=1.24 cm. The number of steps is 58. Insc2d, five ran-
dom configurations are used for averaging, and insc3d
10 000 random configurations are used to ensure the stability
of the averaging. The bed P case has been discussed in the
above. In the bed R case, the general features of the experi-
mental and theoretical results seem to be agreeable with each
other. The predicted reflection curve starts to match qualita-
tively the experimental data from about 3 Hz. The discrep-
ancy at low frequencies is, again, noticeable.

C. Localization length

In the experimentf7g, the localization length is extracted
from the measurement of the total wave amplitude attenua-

tions. In the simulation, the localization length is obtained
from the inverse of the Lyapounov exponent given in Eq.
s28d. Here the bed R case is considered and the parameters
areH0=1.75 cm,L0=4.1 cm, and the height of the steps and
the separation between steps vary randomly within the
ranges fH0−DH ,H0+DHg and fL0−DL ,L0+DLg respec-
tively; here, DH=1.2425 cm andDL=2 cm. Ten thousand
steps and 10 000 random configurations have been used in
the simulation to ensure the stability of the numerical results.

The numerical and experimental results are shown in Fig.
5. Here the localization length is plotted against the fre-
quency. The results from Ref.f7g are shown in the inset. A
few observations are in order.s1d In Ref. f7g, the authors
have used a potential formulation to obtain the localization
length, denoted by the solid length in the inset. By eye in-
spection, we see that the present numerical results agree re-
markably well with the results from the potential theory, thus
providing further support for the present relatively simple
theory, stemming from Ref.f23g. s2d The numerical results
also agree with the averaged experimental data in the vicinity
of the frequency 2 Hz.s3d There is a huge fluctuation in the
experiment results. From our simulation, we think that such a
significant deviation is due to insufficient average numbers,
an obvious limitation on any experiment. This is particularly
an important factor when the localization length is long.
Nevertheless, the agreement shown in Fig. 5 is encouraging.

D. Behavior of the wave amplitude along the random bed

In the experiment, the variation of the wave amplitude
along the random bed is also measured. Both bed RS and bed
R cases are considered. The parameters used in the experi-
ment f7g are summarized as follows. In the bed RS case,
H0=1.75 cm,sH /H=0.43, L0=4.1 cm, and the separation
between steps varies randomly in the range off2 cm,8 cmg.
In the bed R case,H0=1.75 cm,L0=4.1 cm, and the height
of the steps and the separation between steps vary randomly

FIG. 5. Localization length versus frequency for the bed R case.
The experimental results are shown in the inset, and the legends can
be referred to inf7g; for example, the lines in the inset refer to the
results from two other theoretical calculationf7g. The five black
dots denote the results from an averaging over five random
configurations.

FIG. 6. Variation of the amplitude of wave
elevation along the wave tank for the bed RS and
bed R cases for different frequencies. The experi-
mentalf7g and numerical results are shown in the
left and right panels, respectively.
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within the rangesfH0−DH ,H0+DHg and fL0−DL ,L0+DLg,
respectively; here,DH=1.2425 cm andDL=2 cm. Four dif-
ferent frequencies have been measured and simulated.

The experimental and simulation results for a given ran-
dom realization of the random beds are presented in Fig. 6. It
is shown that the theoretical results match remarkably well
the experimental results. It is shown that the waves do not
decay monotonically along the random bottomswithout av-
eragingd, due to the manifestation of resonant modes of the
beds. The resonances are sensitive to the frequency variation.
We also found that the occurrence of the resonances is sen-
sitive to the random configuration.

We have further computed the averaged variation of the
wave amplitude along the random bed for a sufficiently large
number of random configurations. We found that though
smeared out a little by the averaging, the resonance feature
remains for spatial points near the transmission and tends to
diminish for large traveling paths. And the averaged ampli-
tude decays exponentially with increasing traveling dis-
tances. As an example, in Fig. 7 we illustrate these by the
results of the bed RS case withf =1.6 Hz. The results in Fig.
7 also indicate that the exponential decay rate, associated
with the localization length, may not be accurately obtained
from measurements done on insufficiently long samples, as
the fluctuation can be quite significant for small sample
sizes.

IV. SUMMARY

In summary, we have considered the propagation of water
surface waves over topographical bottoms. A transfer method
has been developed to compute the wave field along the
propagating path, the transmission, and reflection coeffi-
cients. The localization effects due to disordered bottom
structures are also considered. The theory has been applied to
analyze the existing experimental results. Some agreements
and discrepancies are discovered and discussed. It is pointed
out that more detailed experiments may be helpful in not
only identifying the peculiar localization phenomenon, but in
helping improve theories for water-wave propagation over
rough bottoms.
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tion along the wave tank for the bed RS from Fig. 6 withf
=1.6 Hz. To show the behavior near the transmission site, the re-
sults are plotted in two length scales:sa1d up to 2 m andsa2d up to
20 m.
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